
ADFSL Conference on Digital Forensics, Security and Law, 2016

ONE-TIME PAD ENCRYPTION STEGANOGRAPHY SYSTEM

Michael J. Pelosi
michael.pelosi1@erau.edu

Gary Kessler
gck@garykessler.net

Embry-Riddle Aeronautical University
Daytona Beach, FL

Michael Scott Brown
michael.brown@umuc.edu

University of Maryland University College
Adelphi, MD

ABSTRACT

In this paper we introduce and describe a novel approach to adaptive image steganography which is
combined with One-Time Pad encryption, and demonstrate the software which implements this
methodology. Testing using the state-of-the-art steganalysis software tool StegExpose concludes the
image hiding is reliably secure and undetectable using reasonably-sized message payloads (≤25%
message bits per image pixel; bpp). Payload image file format outputs from the software include PNG,
BMP, JP2, JXR, J2K, TIFF, and WEBP. A variety of file output formats is empirically important as most
steganalysis programs will only accept PNG, BMP, and possibly JPG, as the file inputs.

Keywords: steganography, one-time pad, steganalysis, information hiding, digital forensics

1. INTRODUCTION

In this paper we introduce a comprehensive steganography software system and platform framework
based on One-Time Pad (OTP) encryption and adaptive steganography technology. We provide usage
recommendations and advice guidelines. The system is tested and shown to be resistant to many common
steganalysis attacks. In the context of this paper we are assumed advocate of the steganographer; someone
who may be a political dissident in an oppressive regime, a religiously persecuted individual, a friendly
agent engaging in covert communication, or a lawful individual desiring complete communication
privacy, among other compelling examples.

2. BACKGROUND

2.1 Steganography

Steganography, the art of invisible communication, is achieved by hiding secret data inside a carrier file
such as an image. After hiding the secret data, the carrier file should appear unsuspicious so that the very
existence of the embedded data is concealed. A major drawback to encryption is that the existence of the
message data is not hidden. Data that has been encrypted, although unreadable, still exists as a suspicion
arousing file transfer. If given enough time, once alerted, someone could potentially decrypt the data or
derive other intelligence regarding either sender or receiver. A solution to this problem is steganography.
This is the ancient art of hiding messages so that they are not detectable.

In steganography, the possible cover carriers are unsuspicious appearing files (images, audio, video, text,
or some other digitally representative code) which will hold the hidden information. A message is the
information hidden and may be plaintext, cipher text, images, or anything that can be embedded into a bit

1

ADFSL Conference on Digital Forensics, Security and Law, 2016

stream. Together the cover carrier and the embedded message create a stego-carrier. Hiding information
may require a stego key which is additional secret information, such as a password or OTP key, required
for embedding the information. For example, when a secret message is hidden within a cover image, the
resulting product is a stego-image. A possible formula of the process may be represented as: cover
medium + embedded message + stego key = stego-medium

Figure 1. Graphical Version of a Steganographic System.

fE: steganographic function "embedding".
fE

-1: steganographic function "extracting".
cover: cover data in which emb will be hidden.
emb: message file to be hidden.
stego: cover data with the hidden message.

The advantage of steganography is that it can be used to secretly transmit messages without the fact of the
transmission being discovered. Often, using encryption might identify the sender or receiver as someone
with something to hide. It is believed that steganography was first practiced during the Golden Age in
Greece. An ancient Greek record describes the practice of melting wax off wax tablets used for writing
messages and then inscribing a message in the underlying wood. The wax was then reapplied to the wood,
giving the appearance of a new, unused tablet. The resulting tablets could be conveniently transported
without anyone suspecting the presence of a message beneath the wax.

2.2 LSB Steganography

The simplest and popular image steganographic method is the least significant bit (LSB) substitution. It
embeds messages into cover image by replacing the least significant bits directly. The hiding capacity can
be increased by using up to 4 least significant bits (one each for Red, Green, Blue, and Alpha color
channels, respectively) in each pixel. It has a common weak point i.e. the sample value changes
asymmetrically. When the LSB of cover medium sample value is equal to the message bit, no change is
made. Otherwise the value 2n is changed to 2n+1 or 2n+1 is changed to 2n. There are many
improvements and modifications that have been proposed to strengthen this technique, such as adaptive
techniques that alter payload distribution based on image characteristics. If the message is first encrypted
and then embedded, the security is enhanced.

2.3 One-Time Pad

The "one-time pad" encryption algorithm was invented in the early 1900's, and has since been proven as
unbreakable. The one-time pad algorithm is derived from a previous cipher called Vernam Cipher, named
after Gilbert Vernam. The Vernam Cipher was a cipher that combined a message with a key read from a
paper tape or pad. The Vernam Cipher was not unbreakable until Joseph Mauborgne recognized that if the
key was completely random the cryptanalytic difficultly would be equal to attempting every possible key
(Kahn 1996). Even when trying every possible key, one would still have to review each attempt at

2

ADFSL Conference on Digital Forensics, Security and Law, 2016

decipherment to see if the proper key was used. The unbreakable aspect of the one-time pad comes from
two assumptions: the key used is completely random and the key cannot be used more than once. The
security of the one-time pad relies on keeping the key secret and using each key only once.

The one-time pad is typically implemented by using exclusive-or (XOR) addition to combine plaintext
elements with key elements. An example of this is shown in Figure 2. The key used for encryption is also
used for decryption. Applying the same key to the ciphertext results in the output of the original plaintext.

Figure 2. Example of a One-Time Pad implementation using XOR addition.

OTP is immune even to unlimited resources brute-force attacks. Trying all keys simply yields all possible
plaintexts, all equally likely to be the actual plaintext. Even with known plaintext, such as part of the
message being known, bruteforce attacks cannot be used, since an attacker is unable to gain any
information about the parts of the key needed to decrypt the rest of the message.

3. METHODOLOGY

The following describes the general method implemented in the software for key generation, encryption,
embedding, message transfer, and decryption.

3.1 General Method

1. Random image keys are generated using a key generator program. The key generator program
generates one-time pad keys that consist of random colored pixels. Each random colored
pixels consists of random values for red, green, and blue colors throughout the image. One
image key is generated for every message that is intended to be sent.

2. To encrypt a message, a cover image and random key image is selected. Each pixel in the
cover image is XOR'ed with the key image X, Y coordinate pixel. Each pixel consists of a 32-
bit long integer color value. One byte each corresponds to red, green, and blue components,
respectively. The XOR'ed pixel values are then adjusted to hide the message. The bytes in the
message are divided up into bits — one bit per pixel. The least significant bit (LSB) in the
XOR'ed pixel colors are then adjusted to hide the message. Bit values that do not correspond
are adjusted (in general 50% of the values will already be set correctly). LSB's for red, green,
or blue are selected based on a local pixel variation score, contingent if the sum of the RGB
LSB's are even or odd (even corresponds to a 0 bit, odd to a 1 bit).

3. At this point, the newly derived color values are XOR'ed once again with the random image
key to generate color values very close to the original image. These pixel color values will be
used to construct the steganographic image that will be sent to the receiver.

3

ADFSL Conference on Digital Forensics, Security and Law, 2016

4. Ideally at this point, both the original cover image and the senders copy of the random image
key can be destroyed (forensically wiped from the hard drive using a file erasure procedure).
This is to prevent later detection and statistical comparisons.

5. Upon receipt of the steganographic image, the receiver loads the intended image key and
XOR's each pixel of the steganographic image with its respective corresponding X, Y pixel in
the image key. This will derive a series of bit values that correspond to the plaintext message.
The bits can be reassembled into bytes (and later 2-byte Unicode characters) that correspond
to the plaintext message.

6. The start and end of the message are delimited by randomly chosen 10 character delimiting
strings that are embedded as EXIF comments into the random image key by the key generator
program. Thus, random message padding is incorporated at the start and end of messages.

7. The random image key also contains a random number seed, this is used for the random
number generator algorithm in use, and starts the generator at the proper sequence start value.

3.2 Random Number Generation

A cryptographically secure pseudo-random number generator (CSPRNG) or cryptographic pseudorandom
number generator (CPRNG) is a pseudorandom number generator (PRNG) with properties that make it
suitable for use in cryptography. Ideally, the generation of random numbers in CSPRNGs uses entropy
obtained from a high-quality source, which might be a hardware random number generator or perhaps
unpredictable system processes — though unexpected correlations have been found in several such
ostensibly independent processes. Several robust CPRNGs are incorporated into the steganography
software.

3.2.1 Mersenne Twister

The Mersenne Twister is a pseudorandom number generator (PRNG). It is by far the most widely used
general-purpose PRNG. Its name derives from the fact that its period length is chosen to be a Mersenne
prime. The Mersenne Twister was developed in 1997 by Makoto Matsumoto and Takuji Nishimura. It was
designed specifically to rectify most of the flaws found in older PRNGs. It was the first PRNG to provide
fast generation of high-quality pseudorandom integers. The most commonly used version of the Mersenne
Twister algorithm is based on the Mersenne prime 219937−1. The standard library implementation of this,
MT19937, uses a 32-bit word length. There is another implementation that uses a 64-bit word length,
MT19937-64, that generates a different sequence. The software implements a cryptographically secure
version of the Mersenne Twister provided by the algorithm authors Matsumoto and Nishimura.

3.2.2 Other Random Number Generators

Optional random number generator selections included in the OTP-Steg key generator program include
the following (each of these can be optionally selected by the user):

 ISAAC — ISAAC (indirection, shift, accumulate, add, and count) is a cryptographically
secure pseudorandom number generator and a stream cipher designed by Robert J.
Jenkins, Jr. in 1996.

 CryptGenRandom — CryptGenRandom is a cryptographically secure pseudorandom
number generator function that is included in Microsoft's Cryptographic Application
Programming Interface. In Win32 programs, Microsoft recommends its use anywhere
random number generation is needed.

 RtlGenRandom — On a default Windows XP and later install, CryptGenRandom calls
into a function named ADVAPI32!RtlGenRandom, which does not require one to load all
the CryptAPI classes for usage.

4

ADFSL Conference on Digital Forensics, Security and Law, 2016

 Rnd() — Standard API random number generator (for research/testing purposes only – it
is not cryptographically secure).

3.3 Key Generation

3.3.1 Key Delimiters

Upon key generation, a pair of key delimiters is also randomly chosen of 10 Unicode characters each for
the start delimiter and end delimiter, respectively. These are used to indicate to the decryption program
exactly where the message starts, and where it ends. Random padding is added to both ends of the
message — the start and the end of the message embedded in the payload file. The key delimiters identify
where to start the message text, and where to cut it short at the end of the message. These key delimiters
are contained in the EXIF image comment data in the key file. No EXIF comment data whatsoever is
contained in the payload file. Also, the key delimiter values are utilized for random number generation
seed data used for encryption and decryption.

3.6 Expert System to Evaluate and Score Candidate Cover Images

It is well known from the literature that some cover images present much better candidates for
steganographic security than others based on image characteristics. Typically, cover images with a high
degree of pixel color variation, very few saturated white or black pixels, and few pixels next to each other
of the same color, are excellent payload candidates. We implement an expert system to give the software
user immediate knowledge of how good a candidate a potential color image is for detection security. We
have incorporated a tentative scoring system that evaluates images based on several factors. The output
score ranges from 0 to 100%, with greater than 90% score being a good candidate for a cover image.
Scores of 80-90% are marginal, and less than 80% are considered not adequate. In the current preliminary
version, a peak signal-to-noise ratio (PSNR) versus a solid color image is calculated. This rating is given
a weighting of 25% in the overall score. Also, the number of same color pixels next to each other is given
a weighting of 25% for up to 5% of the image pixels (in other words, a 5% of the image pixels are same
color next to each other, this rating would be zero). Thirdly, a weighted rating of 25% is given to the
number of white pixels, up to 5%. The same weighting is also calculated for black pixels. Each of the four
factors is combined for the rating from 0% up to 100%. Ideally, a cover image will have zero white pixels,
zero black pixels, very few colors next to each other that are the same, and a very high variation in color
over comparison to a solid color image. Table 1 below lists the above and additional cover image scoring
factors that could be evaluated in an expert system rating scheme.

Table 1. Potential Candidate Image Scoring Factors.
Factor Description Value

PSNR over solid color Peak signal-to-noise ratio of
image to solid color image.

Higher values are better.

Percentage of saturated colors Portion of the image that is either
all-white or all black.

Lower values are better.

Percentage of nearby same colors Portion of image that has
neighboring pixels of the same
color.

Lower values are better.

Randomness of LSB's Measures of randomness of the
distribution of the significant
bits.

Higher randomness is better.

Random RGB LSB distribution Randomness of each color
channel.

Higher values are better.

5

ADFSL Conference on Digital Forensics, Security and Law, 2016

RS test on Cover Image Clean RS test on cover image. Lower values are better —
indicates less probability of a
threshold being reached after
encoding.

Chi-squared test on Cover Image Clean Chi-square test on cover
image.

Lower values are better.

Pure Photograph Photo has not previously been
compression encoded using
algorithm like JPEG.

Straight from a high-quality
digital camera is best.

Original Photograph No other copies of the photo
exist in clean or altered state that
can be used for comparison.

Known source and originality is
best here.

Dimensions It is well known that extremely
large images have less pixel color
variation and steganography here
is more easily detected.

Approximate pixel dimensions of
images frequently found on the
Internet are best — about
1600×1200 or less pixels.

3.7 Future Security = Small Payloads

To ensure robustness against potential future attacks we have limited payload relative sizes. The high
limit for the bits-per-pixel pixel is approximately 25%. And since only half of pixels are typically altered
based on the message, this corresponds to a practical limit of about 12.5% pixel alteration. By limiting the
pixel bit payload, it quite robustly limits detectability now and in the future. Extremely advanced
statistical detection techniques are being promulgated that are improving the odds of successfully
detecting steganography efforts. There is no guarantee that these steganalysis efforts will not double or
triple in effectiveness in the next few years. As a safety measure and margin of security, payload size is
strictly limited by the software to an amount that should be reasonably safe for the foreseeable future.
This equals future security for messages that may be encrypted today and subsequently intercepted and
archived for several years for later decipherment.

3.8 Steganalysis

Steganalysis is "the process of detecting steganography by looking at variances between bit patterns and
statistical norms". It is the art of discovering and revealing covert messages. The goal of steganalysis is to
identify suspected information streams, determine whether or not they have hidden messages encoded
into them, and, if possible, recover the hidden information. Unlike cryptanalysis, where it is evident that
intercepted encrypted data contains a message, steganalysis generally starts with several suspect
information streams but uncertainty whether any of these contain hidden message. The steganalyst starts
by reducing the set of suspect information streams to a subset of most likely altered information streams.
This is usually done with statistical analysis using advanced statistics techniques.

Analyzing repetitive patterns may reveal the identification of a steganography tool or hidden information.
To inspect these patterns an approach is to compare the original cover image with the stego image and
note visible differences. This is called a known-carrier attack. By comparing numerous images it is
possible that patterns emerge as signatures to a steganography tool. Another visual clue to the presence of
hidden information is padding or cropping of an image. With some steganographic tools if an image does
not fit into a fixed size it is cropped or padded with black spaces. There may also be a difference in the
file size between the stego-image and the cover image. Another indicator is a large increase or decrease in
the number of unique colors, or colors in a palette which increase incrementally rather than randomly.
These are just examples among the many published and effective approaches.

6

ADFSL Conference on Digital Forensics, Security and Law, 2016

StegExpose is a steganalysis tool specialized in detecting LSB (least significant bit) steganography in
lossless images such as PNG and BMP. It has a command line interface and is designed to analyze images
in bulk while providing reporting capabilities and customization which is comprehensible for non forensic
experts. The StegExpose rating algorithm is derived from an intelligent and thoroughly tested combination
of pre-existing pixel based steganalysis methods including Sample Pairs by Dumitrescu (2003), RS
Analysis by Fridrich (2001), Chi-Square Attack by Westfeld (2000) and Primary Sets by Dumitrescu
(2002). In addition to detecting the presence of steganography, StegExpose also features the quantitative
steganalysis (determining the length of the hidden message). We utilize StegExpose for steganalysis to test
the software reliability in hiding messages effectively from steganalysis.

3.9 Performance Speed and Robust Steganography

The straightforwardness of the embedding algorithm has also resulted in the good embedding speed. Most
of the files worked with using the software take less than 60 to 90 seconds for embedding. Typically,
about 30 seconds is required for decryption. Since the bit per pixel payload is less than 25%, the random
number generator does not have to repeatedly struggle to find empty pixels that have not been previously
encoded.

4. SOFTWARE IMPLEMENTATION

The software implementation consists of three executable files: a key generator program, an encryption
program, and a decryption program. The encryption program has image analysis functions and windows
built-in to aid in cover image categorization.

4.1 Key Generation

A screenshot of the key generation program shown below. The key generation program constructs image
keys of random colored pixels according to the user preference for size and file naming. Up to five
previously discussed random number generators can be chosen from to generate the random colored
pixels.

Figure 4. Key Generator executable program.

7

ADFSL Conference on Digital Forensics, Security and Law, 2016

4.2 Encryption and Embedding

The encryption program has by wide margin the most features and functionality built-in. Also included
are functions for deleting and forensically wiping the key file used for encryption, as well as the original
cover image. By comparing the encrypted payload file to an original cover image, steganography could
easily be detected as the difference between the two images. It is an extremely important security measure
to eliminate the original cover image and key as soon as possible after encryption takes place.

Figure 5. Encrypt/Embed executable program.

4.3 Message Hash Value

SHA-256 values of the message are calculated in both the encryption and decryption steps. In the
encryption step, the hashed value is incorporated into the end of the message string. Upon decryption, the
transmitted hash value is compared to the hashed value of the decrypted message, and displayed in the
decryption program graphical user interface. If the values match the user is informed that the message has
not been altered in any way since it was encrypted by the sender. This is also a double check that
successful decryption has taken place and the message is authentic.

4.4 Text Compression

Compression prior to embedding the message generally reduces message size by 50 to 80%. The zLib
compression library DLL is utilized and called as a function within both the encrypt and decrypt

8

ADFSL Conference on Digital Forensics, Security and Law, 2016

programs. The result makes encryption and decryption quicker and also has the benefit of reducing the bit
per pixel payload size in the cover image, increasing security against detection.

4.5 Cover and Key File Deletion and Forensic Data Wiping

File wiping utilities are used to delete individual files from an operating system mounted drive. The
advantage of file wiping utilities is that they can accomplish their task in a relatively short amount of time
as opposed to disk cleaning utilities which take much longer and must be run separately.

4.6 Built-In Cover and Stego Image Analysis Tools

Several image statistical analysis features are built into the encryption program. Peak signal-to-noise ratio
(PSNR), RS, Chi-Squared, LSB visual analysis, color changes, and color variations. The distortion in the
stego-image can be measured by parameters such as mean square error (MSE) and peak signal-to-noise
ratio (PSNR) (see Equation 1 and 2 below), and correlation. The lesser distortion means, the lesser MSE,
but higher PSNR. If p is a M×N grayscale image and q is its stego-image, then the MSE and PSNR values
are computed using (1) and (2). For color images a pixel comprises 3 or 4 bytes. Each byte can be treated
as a pixel and the same equations can be used to calculate the MSE and PSNR.

The software image analysis window in the encryption program is shown below. Using this window,
several operations can be performed to estimate effectiveness of message embedding. Least significant bit
(LSB) color values can be investigated visually. Shown on the right of the analysis window are the least
significant bit values of the photo on the left. If the least significant bit for red, green, and/or blue is set,
this color is added at full intensity to the respective pixel in the image on the right. In Figure 7, individual
least significant bit color values can be investigated as well in the red, green, and blue channels. In this
image it is obvious there is a problem with the blue channel — the sky has full intensity for all values.
Encoding message data here would be risky, as the pixel variation is nonexistent. Steganography would
be very easily detected by any encoding in this area. As a result the software spreads out the message
embedding adaptively, and ignores the blue channel in the area of the sky. Since the red channel has the
most random variation throughout the image, it carries the largest brunt of the payload, leveraging its
random character throughout the image.

9

ADFSL Conference on Digital Forensics, Security and Law, 2016

Figure 6. Image Analysis window, cover image on left, LSB analysis on the right.

Figure 7. Analysis LSB color analysis graphics (Red, Green, Blue, All Colors).

Shown below are the variations in the red channel, the blue channel in Figure 9 shows the lack of
variation in the sky area.

10

ADFSL Conference on Digital Forensics, Security and Law, 2016

Figure 8. Red channel variation score (normalized to 0-255).

Figure 9. Blue channel variation score (normalized to 0-255).

11

ADFSL Conference on Digital Forensics, Security and Law, 2016

In Figure 10 below, the pixel least significant bit encodings are shown. Notice that in the area of the sky,
only red pixels are encoded in the least significant bit. Other areas of the image vary between green and
blue embedding depending on which color has the most variation in that pixel general area. Figure 11
shows a blowup of the pixel least significant coding in the area of the transition between the trees and the
sky. Notice that the pixel encodings shift from primarily blue-green to the red color at this transition.

Figure 10. Pixel LSB modification encodings (Red, Green, or Blue).

Figure 11. Figure 10 "Blow-Up": Pixel LSB encodings (Red, Green, or Blue).

4.7 Decryption

The decryption process largely reverses the encryption process using the decryption program. A SHA-256
hash value is computed from the decrypted message and compared to the hashed value contained within

12

ADFSL Conference on Digital Forensics, Security and Law, 2016

the payload file. If the two values match, the hashed value is presented with a green colored background.
If not, the background is reddish. A green value indicates to the receiver that the message has not been
altered in any way since it was written.

Figure 12. Decrypt/Extract executable program.

5. USAGE RECOMMENDATIONS

5.1 Photo selection

There are several general guidelines for photo image selection to increase security. Original photos taken
with the user's own camera should be selected as cover images. This is to ensure that the duplicate of the
original photo does not exist somewhere on the Internet for comparison. The photo should never have
previously been encoded to JPEG to ensure full CMOS pixel sensor color variations throughout the
image. As mentioned previously, once these criteria are satisfied, the user can evaluate an encodability
score that is calculated by the encryption program that ranges from 0 to 100%.

5.2 Encodability Score

The user should choose in general images that score above 90% for encodability to enhance steganalysis
security. The following is the weighting breakdown for the encodability score:

25% Overall PSNR (dB) variation score (0-100%) (more color variation = higher score)
25% Same colors next to each other (0-5%) (less same colors = higher score)
25% Black pixels (0-5%) (less black = higher score)
25% White pixels (0-5%) (less white = higher score)
100% - (100-90% = OK, 90-80% = Marginal, <80% = Unacceptable)

13

ADFSL Conference on Digital Forensics, Security and Law, 2016

5.3 Recommended Steganographic Practices

Table 2. Recommended Steganographic Practices.
No. Practice Description

1
Software

Operation

Steganography software should be operated on a computer that is not
connected to any network or the Internet. Files should be transferred using
write only media such as DVD or CD, or less securely by USB drive.

2 Original Photos

Only original photos taken by the users high-quality camera should be
considered as cover images. This is to ensure that the image does not have
duplicates available on the Internet. Use RAW (original camera file
format) images where possible. The software directly accepts all RAW
image file types including Nikon, Canon, Sony, etc.

3
Software USB

Loaded

The software should be run off of a USB drive plugged into the isolated
computer. Further, USB drive containing software, keys, and cover
images, should be located separately from the isolated computer in a safe
and secure location.

4
Isolated

Computers

The isolated computer used to run the software should be well secured
and not networked in any way. The operating system should be directly
installed from DVD, and antivirus and checks for malware should be
regularly run to ensure there is no keystroke loggers, rootkits, or other
security compromises installed.

5
"To" and "From"

Keys

Both sender and receiver should have their own set of unique keys.
Sender A to B, and B to A, each use their own one-way key series. This is
to prevent key reuse. Each key must be used only one time, and one time
only. Security using OTP depends on this precept.

6 Exchanging Keys

Key exchange should take place upon physical meeting using write only
media such as DVD or CD. Key exchange must not take place over a
network. Keys should be securely generated on isolated computers. Keys
must be stored on removable USB drives separate from the isolated
computer.

7 Deleting Files

All files including cover image files and key files should be forensically
deleted and wiped once used. Forensic wiping utilities in the encryption
and decryption programs can be used for this purpose. Wiping consists of
randomly overwriting the previous file seven times with random data.

8
Sending

Encrypted Files

Encrypted files should be sent as anonymously as possible. Direct email
exchange should be avoided. A preferable alternative is to upload files
periodically to gallery websites which have potentially thousands of
viewers and downloaders daily. Identifying the specific receiver will be
difficult in this situation. Each sender should upload to a different
anonymous gallery.

9 Monitoring
Windows

Vulnerabilities

It should be known that just the act of plugging in a USB drive into a
Windows computer creates a digital trail throughout the system registry.
Installing software using a setup program also creates numerous records
within the operating system registry. As a result, the software should be
run off of a USB drive without running a separate install/setup utility.
Windows must be isolated off of any network to ensure malware is not

14

ADFSL Conference on Digital Forensics, Security and Law, 2016

installed.

10 Malware

Malware can cause a compromise in the steganography system at any
time. A keystroke logger that is uploading typed messages is an instant
fail. Users must be extremely cautious and knowledgeable about potential
malware threats before using the software. In particular, any networked
computer presents a point of vulnerability — the software and keys must
never be used here. Only transfer of files previously encrypted on an
isolated computer can be conducted over a network.

11 Usage Limitations

The biggest limitation is the human factor. Operational security must be
observed that all times in addition to technical security. This means
aggressive securing of the USB drive use for the software and keys, as
well as limited knowledge by parties involved. People should be informed
on a need to know basis only.

13 Encrypted Keys
For further security, keys can be encrypted for storage. As a result they
will not be able to be used unless the user has knowledge of the
encryption key.

14
Wipe Original

Photos
Original photos must be deleted and erased from the camera, storage
medium, and USB drive as soon as possible after they are used.

15 Wipe Used Keys Keys must be deleted and erased as soon as they are used.

16
Internet Computer

"Clean"
The computer connected to the Internet must be clean of viruses and
malware or keystroke loggers. Special care must be taken in this area.

17 Camera Secured

The photo CMOS sensor output profile can be mapped to a particular
individual camera. Photo sent on the Internet can be matched up to the
users camera. As a result an effort should be made to keep the camera
secure.

18
File Upload

Galleries
File upload galleries should be selected for anonymity and high traffic
volume.

19
Carefully Selected

Cover Images

Cover images should be conforming to high encodability statistics and
originality. Also they should be of subject matter that will not raise any
suspicions.

20 Image File Format

Various image file formats can be chosen, leveraging the fact that
steganalysis software will not run on many different types of image file
types. Take advantage of other lossless file formats besides PNG and
BMP such as TIF, J2K, EXR, WEBP, and JXR.

21 Must-Dos

1: Keep software and keys in secure locations on USB drives. 2: Use
software on isolated computer not connected to Internet. 3: Use keys and
photos only once and be sure to erase files as soon as possible, especially
original cover images and keys.

5.4 Steganographic Communication Security State Level Estimation

We envision certain levels of steganographic communication security levels that correspondents can use
for planning, analysis, and security estimations. Thresholds can be established for protective measures
using these security level guidelines.

15

ADFSL Conference on Digital Forensics, Security and Law, 2016

Table 3. Notional Steganographic Security Levels.
Security

Level
Name Description Impact

10 Secure
Communication commencing securely. Operational
security and human threat and insider threat must be
strongly monitored and evaluated here.

None — success

9
Communication

Suspected
Authorities suspect communication without
knowledge of sender and receiver.

Low

8
Steg Statistically

Detected
Positive steganography screening results indicating
further investigation.

Moderate

7
Internet

Computer
Searched

If proper security measures recommended previously
are followed, nothing should be derived. Duress
codeword should be immediately used and
communication ceased.

Moderate

6
Transmitted Files

Discovered
If proper procedures are used, locating these files
should not present much evidence.

Moderate

5
Software

Computer
Discovered

Traces of software use should be detectable in
Windows registry.

High

4 Steg Known
Investigators conclude illicit communication has taken
place, without acquiring USB drive(s).

High

3
USB Drive
discovered

User should make efforts to inform receiver
communication is compromised.

Severe

2
Software

Discovered/
Acquired

Knowledge of message text should be assumed at this
point.

Severe

1 Key(s) acquired Complete security compromise. Severe

0 Suspect Detained
All communicating parties should make efforts to
destroy any remaining evidence.

Failure

Communicators should have a procedure in place to indicate ceasing of messages and also to destroy
related software and keys systematically.

Steganographers should consider incorporating a duress codeword into their communication security
protocol. The duress code word should be a predetermined word or phrase that indicates to the receiving
party that communication security has been compromised. For example, capture by authorities may have
created a situation where one party is succumbing to efforts to be "turned". The duress code word
indicates such a situation and should be carefully chosen to arouse no suspicion should authorities have
knowledge of its inclusion in a "trap" message.

 5.5 Software Availability

The software is available as a free educational and research download to be used for digital forensics
education and related projects. Please feel free to use the software for your own educational and research
purposes. The software can be acquired here: http://199.175.52.196/OTP-Steg/.

16

http://199.175.52.196/OTP-Steg/

ADFSL Conference on Digital Forensics, Security and Law, 2016

6. STEGANALYSIS RESULTS

StegExpose is a Java based steganalysis tool heavily geared towards bulk analysis of lossless images. It is
a steganalysis tool specialized in detecting LSB (least significant bit) steganography in lossless images
such as PNG and BMP. It has a command line interface and is designed to analyze images in bulk while
providing reporting capabilities and customization which is comprehensible for non forensic experts. The
StegExpose rating algorithm is derived from an intelligent and thoroughly tested combination of pre-
existing pixel based steganalysis methods Two new fusion detectors, standard and fast fusion were
derived from four well known steganalysis methods and successfully implemented in the tool. Standard
fusion is more accurate than any of the component detectors it is derived from.

The following LSB steganalysis methods have been incorporated in StegExpose. RS analysis (Fridrich,
Goljan, and Du 2001) detects randomly scattered LSB embedding in grayscale and color images by
inspecting the differences in the number of regular and singular groups for the LSB and "shifted" LSB
plane. Sample pair analysis (Dumitrescu, Wu, and Wang 2003) is based on a finite state machine whose
states are selected multisets of sample pairs called trace multisets (Dumitrescu, Wu, and Wang 2003). The
chi-square attack (Westfeld and Piltzmann 2000) is a statistical analysis of pairs of values (PoV's)
exchanged during LSB embedding. PoV's are groups of binary values within a object's LSB's. Primary
sets (Dumitrescu, Wu, and Memon 2002) is based on a statistical identity related to certain sets of pixels
in an image. The difference histogram analysis (Zhang and Ping 2003) is a statistical attack on an image's
histogram, measuring the correlation between the least significant and all other bit planes. Two new
fusion detectors, standard and fast fusion, were derived from four well known steganalysis methods and
successfully implemented in the tool. The standard fusion test is more accurate than any of the component
detectors it is derived from.

StegExpose (the free open source download), was run on a batch of 27 image files that were encoded
using the OTP-Steg software. Test specifications and results are shown below. None of the embedded files
were detectable above the preset default threshold. Standard fusion was the test run which consists of all
of the specific steganalysis tests mentioned above.

Table 4. StegExpose Steganalysis Test Specifications.
Test Spec Description

Embedded Text File: U.S. Constitution; 52,782 Bytes Unicode (422,256 bits)

Images: 27 Various landscape PNG photos, 1200×797 pixels (956,400 pixels) Nikon D90.

Uncompressed: Approximate Bits per Pixel (bpp) 0.442 bpp

Compressed (zLib): Approximate Bits per Pixel (bpp) 0.086 bpp

Alterations: 1.445% LSBs altered, 4.335% of pixels

File Archive: http://199.175.52.196/OTP-Steg/USConstitution/

Table 5. StegExpose Steganalysis Test Results using "Standard Fusion" test.
File name Above Stego Threshold? Primary Sets Chi Square Sample Pairs RS analysis Fusion (mean)

00247.png FALSE 0.023408176 0.003533645 null 0.020185798 0.015709206

02155.png FALSE 0.068625394 0.019360332 null 0.044946323 0.044310683

02664.png FALSE NaN 5.03E-13 null 0.086586661 0.043293331

03090.png FALSE NaN 0.00370119 null 0.237370882 0.120536036

03164.png FALSE 0.136200359 0 null 0.022823646 0.053008002

03504.png FALSE NaN 0.003639508 null 0.197240313 0.10043991

17

ADFSL Conference on Digital Forensics, Security and Law, 2016

03509.png FALSE 0.120022314 0.001400793 null 0.035957938 0.052460348

04031.png FALSE 0.004125309 3.57E-04 null 0.043804029 0.016095494

04095.png FALSE NaN 0.00743453 null 0.099196152 0.053315341

04164.png FALSE NaN 0.018406899 null 0.076743739 0.047575319

04378.png FALSE NaN 4.83E-04 null 0.179587058 0.090035137

04479.png FALSE 0.047114348 0.001832157 null 0.061520437 0.036822314

04637.png FALSE NaN 3.57E-04 null 0.093757705 0.04705742

05169.png FALSE 0.030743209 3.57E-04 null 0.037141532 0.022747301

05255.png FALSE NaN 3.57E-04 null 0.112451207 0.056404175

05262.png FALSE 0.018022058 0.002062878 null 0.010998531 0.010361155

05777.png FALSE 0.017279631 6.59E-13 null 0.00706503 0.008114887

06202.png FALSE NaN 4.25E-04 null 0.093641174 0.047033017

06672.png FALSE 0.06420808 0 null 0.064583463 0.042930515

07134.png FALSE 0.03542274 3.57E-04 null 0.017337435 0.017705773

07140.png FALSE NaN 0.001423654 null 0.165817881 0.083620768

07946.png FALSE NaN 1.02E-11 null 0.072127587 0.036063794

08145.png FALSE 0.033316358 2.77E-04 null 0.023061286 0.01888482

09061.png FALSE 0.014700003 0.004850409 null 0.025382546 0.014977653

09252.png FALSE 0.074362745 7.14E-04 null 0.01319539 0.029424144

09431.png FALSE 0.040878552 0.003281354 null 0.031193448 0.025117784

09988.png FALSE 0.062680713 3.54E-04 null 0.054694774 0.039243301

Test Results Summary: Zero (0%) steganalysis detections using the "Standard Fusion" detection
algorithm in StegExpose software.

StegExpose can be downloaded here: https://github.com/b3dk7/StegExpose.

7. CONCLUSION

In this paper we have presented a complete One-Time Pad encryption and steganography system
including all software necessary to complete practical communication. We have compiled recommended
best practices and identified potential security levels. Finally, we have tested the software using robust
state-of-the-art steganalysis techniques and found the low payload threshold maintained in the software
produces a high margin of communication security safety. No payload files were detected (0%
detections), despite each file containing the entire content of the U.S. Constitution as embedded text.

18

https://github.com/b3dk7/StegExpose

ADFSL Conference on Digital Forensics, Security and Law, 2016

REFERENCES

R. J. Anderson, and F. A. P. Petitcolas, “On the limits of steganography”, IEEE Journal of Selected Areas
in Communications, vol.16, no.4, pp.474-481, 1998.

M. Bashardoust, G. B. Sulong, and P. Gerami, “Enhanced LSB image steganography method by using
knight tour algorithm, vignere encryption and LZW compression”, International Journal of Computer
Science Issues, vol.10, no.2, pp.221-227, 2013.

A. Bhatacharya, I. Banerjee, and G. Sanyal, “A survey of steganography and steganalysis techniques in
image, text, audio and video cover carrier”, Journal of Global Research in Computer Science, vol.2, no.4,
pp.1-16, 2011.

C. K. Chan, and L. M. Chang, “Hiding data in images by simple LSB substitution”, Pattern Recognition,
vol.37, pp.469-474, 2004.

A. Cheddad, J. Condell, K. Curran, and P.M. Kevitt, “Digital image steganography: survey and analysis
of current methods”, Signal Processing, vol. 90, pp.727-752, 2010.

S. M. Douiri, M. B. O. Medeni, S. Elbernoussi, and E. M. Souidi, “A new steganographic method for gray
scale image using graph coloring problem”, Applied Mathematics & Information Sciences, vol.7, no.2,
pp.521-527, 2013.

A. Gangwar, and V. Srivastava, “Improved RGB-LSB steganography using secret key”, International
Journal of Computer Trends and Technology, vol.4, no.2, pp.85-89, 2013.

R. S. Gutta, Y. D. Chincholkar, and P. U. Lahane, “Steganography for two and three LSBs using extended
substitution algorithm”, ICTAT Journal on Communication Technology, vol.4, no.1, pp.685-690, 2013.

A. Gutub, M. Ankeer, M. Abu-Ghalioun, A. Shaheen, and A. Alvi, “Pixel indicator high capacity
technique for RGB image based steganography”, in Proceedings of Fifth IEEE International Workshop on
Signal Processing and its Applications, 2008, University of Sharjah, U.A.E.

N. Hamid, A. Yahya, R.B. Ahmad, D. Nejim, and L. Kannon, “Steganography in image files: a survey”,
Australian Journal of Basic and Applied Sciences, vol.7, no.1, pp.35-55, 2013.

J. He, S. Tang, and T. Wu, “An adaptive steganography based on depth-varying embedding”, in
Proceedings of 2008 Congress on Image and Signal Processing, 2008, pp.660-663.

M. Hussain, and M. Hussain, “A survey of image steganography techniques”, International Journal of
Advanced Science and Technology, vol. 54, pp.113-123, 2013.

Y. K. Jain, and R. R. Ahirwal, “A novel image steganography method with adaptive number of least
significant bits modification based on private stego-keys”, International Journal of Computer Science and
Security, vol.4, no.1, pp.40-49, 2010.

M. Juneja, and P.S. Sandhu, “Designing of robust image steganography technique based on LSB insertion
and encryption”, in Proceedings of International Conference on Advances in Recent Technologies in
Communication and Computing, 2009, pp.302-305.

Kamaldeep, “Image steganography techniques in spatial domain, their parameters and analytical
techniques: a review article” , IJAIR, vol.2, no.5, pp.85-92, 2013.

H. B. Kekre, A. A. Athawale, and P. N. Halarnkar, “Increased capacity of information hiding in LSB’s
method for text in image”, International Journal of Electrical, Computer and System Engineering, vol.2,
no.4, pp.246-249, 2008.

Y. K. Lee, G. Bell, S.Y. Huang, R.Z. Wang, and S.J. Shyu, “An advanced least-significant-bit embedding
scheme for steganographic encoding”, LNCS, vol.5414, 2009, pp.349-360.

19

ADFSL Conference on Digital Forensics, Security and Law, 2016

B. Li, J. He, J. Huang, and Y.Q. Shi, “A survey on image steganography and steganalysis”, Journal of
Information Hiding and Multimedia Signal processing, vol.2, no.2, pp.142-172, 2011.

D. C. Lou, and C. H. Hu, “LSB steganographic method based on reversible histogram transformation
function for resisting statistical steganalysis”, Information Sciences, vol.188, pp.346-358, 2012.
Application of a large key cipher in image steganography by exploring the darkest and brightest pixels”,
International Journal of Computer Science and Communication, vol. 3, no.1, pp.49-53, 2012.

A. R. S. Marcal, and P.R. Pereira, “A steganographic method for digital images robust to RS
steganalysis”, LNCS, vol.3656, 2005, pp.1192-1199.

A. Martin, G. Sapiro, and G. Seroussi, “Is image steganography natural”, IEEE Transactions on Image
Processing, vol.14, no.12, pp.2040-2050, 2005.

M. K. Meena, S. Kumar, and N. Gupta, “Image steganography tool using adaptive encoding approach to
maximize image hiding capacity”, International Journal of Soft Computing and Engineering, vol.1, no.2,
pp.7-11, 2011.

A. Mishra, A. Gupta, and D. K. Vishwakarma, “Proposal of a new steganography approach”, in
Proceedings of International Conference on Advances in Computing, Control, and Telecommunication
Technologies, 2009, pp.175-178.

H. Mathkour, G. M. R. Assassa, A. A. Muharib, and I. Kiady, “A novel approach for hiding messages in
images”, in Proceedings of International Conference on Signal Acquisition and Processing, 2009, pp.89-
93.

H. Motameni, M. Norouzi, and A. Hatami, “Labeling method in steganography”, World Academy of
Science, Engineering and Technology, vol. 24, pp.349-354, 2007. , vol. 270, part II, 2012, pp.479-488.

M. T. Parvez, and A. A. Gutub, “RGB intensity based variable-bits image steganography”, in Proceedings
of IEEE Asia-pacific Services Computing Conference, 2008, pp.1322-1327. Gandharba Swain et al. /
International Journal of Computer Science & Engineering Technology (IJCSET)

A. P. S. Pharwaha, “Secure data communication using moderate bit substitution for data hiding with three
layer security”, IE(I) Journal-ET, vol.91, pp.45-50, 2010., International Journal of Security and Its
Applications, vol.6, no.2, pp.1-12, 2012.

G. Swain, and S. K. Lenka, “LSB array based image steganography technique by exploring the four least
significant bits”, CCIS

G. Swain, D. R. Kumar, A. Pradhan, and S. K. Lenka, “A technique for secure communication using
message dependent steganography”, International Journal of Computer and Communication Technology,
vol.2, no. 2- 4, pp.177-181, 2010.

G. Swain, and S. K. Lenka, “Steganography using the twelve square substitution cipher and an index
variable”, in Proceedings of ICECT, 2011, vol.3, pp.84-88.

G. Swain, and S. K. Lenka, “A robust image steganography technique using dynamic embedding with
two least significant bits”, Advanced Materials Research, vols. 403-408, pp.835-841, 2012.

G. Swain, and S. K. Lenka, “A dynamic approach to image steganography using the three least significant
bits and extended hill cipher”, Advanced Materials Research, vols. 403-408 pp.842-849, 2012.

G. Swain, and S. K. Lenka, “A technique for secret communication by using a new block cipher with
dynamic steganography”

G. Swain, and S. K. Lenka, “A hybrid approach to steganography- embedding at darkest and brightest
pixels”, in Proceedings of International Conference on Communication and Computational Intelligence,
2010, pp.529-534.

20

ADFSL Conference on Digital Forensics, Security and Law, 2016

M. A. B. Younes, and A. Jantan, “A new steganography approach for image encryption exchange by using
least significant bit insertion”, International Journal of Computer Science and Network Security, vol.8,
no.6, pp.247-254, 2008.

H. J. Zhang, and H. J. Tang, “A novel image steganography algorithm against statistical analysis”, in
Proceedings of Sixth International Conference on Machine Learning and Cybernetics, 2007, pp.3884-
3888.

21

